小学范文网

导航栏

×
小学生范文 > 实用范文 > 导航

人教版六年级上册数学《圆的面积》教案

人教版六年级上册数学《圆的面积》教案(锦集十四篇)。

作为一名教职工,编写教学设计是必不可少的,教学设计一般包括教学目标、教学重难点、教学方法、教学步骤与时间分配等环节。如何把教学设计做到重点突出呢?以下是小编为大家整理的人教版六年级数学《圆的面积》教学设计,希望能够帮助到大家。

人教版六年级上册数学《圆的面积》教案 篇1

活动目标:

1.指导幼儿在圆形的基础上添画各种物体,使幼儿在添画过程中知道圆能变成各种有趣的东西。

2.发展幼儿的想象力和创造力。

3.培养幼儿的观察、操作、表达能力,提高幼儿的审美情趣及创新意识。

4.尝试大胆添画,能大胆表述自己的想法。

5.培养幼儿的欣赏能力。

活动准备:

1.各种颜色、各种大小的圆。

2.由圆变成的物体范例。

3.一位大班幼儿

活动重难点:

重点:指导幼儿能用一个至几个圆变成各种物体

难点:引导幼儿发挥想象,制作和别人不同的作品

活动过程:

1.引起兴趣

教师:“小朋友,今天我们班里来了一位小客人,(请出大班的小朋友),他的名字叫元元,(小朋友向元元问好)元元特别喜欢圆的东西,请他来说说他喜欢什么圆圆的东西?(大班幼儿说:我喜欢玩圆圆的皮球,爱照圆圆的镜子,爱吃圆圆的饼干,还会变圆的魔术!)

教师:什么是变圆的魔术呀?你能变给我们中二班小朋友看吗?

2.元元表演变圆魔术

教师:小朋友你们知道,元元是怎么把红色的`圆变成苹果的呀?(在红色圆上画上绿色的叶子就变成苹果了)你们会变吗?你们会变什么呢?怎么变呢?你们真聪明一下子就把元元的变圆魔术学会了。

教师:元元,你还会变什么?元元:我还会变两个圆,三个圆,四个圆,许多圆呢。

元元表演(把两个圆变成了小鸡,三个圆变成了小花,四个圆变成了蝴蝶。)小朋友,你能把两个圆,三个圆,四个圆,许多的圆变成什么呢?请幼儿自由讨论,告诉身边的好朋友。

3.幼儿操作,教师巡回指导

(1)交代任务:我们今天也来学元元变圆的魔术。老师出示为幼儿准备的材料(老师为小朋友准备了各种颜色,各种大小的圆。请小朋友先想好你想用几个圆变成什么东西,然后找到你所需要的圆,撕去圆后面的双面胶的外面一层,粘在纸上,再把它添画好。我们小朋友把圆变好了,可以互相参观,也可以请客人来参观,告诉客人,你把几个圆变成什么东西了。现在请小朋友去找一个好朋友一起去变圆。

(2)教师巡回指导:

要求幼儿把废纸仍在箩筐里。变出和别人不一样的东西来。帮助能力差的幼儿,鼓励他大胆变圆。

4.评价

鼓励幼儿大胆的告诉同伴和客人,你用几个圆变成了什么东西。

活动延伸:

小朋友,你们除了认识圆还认识什么形状的图形?正方形,三角形它们也想让我们小朋友来变魔术,以后我们请它们都来,变出更多,更美的东西好吗?

在区域活动中让幼儿玩各种图形的添画。

活动反思:

为了激发幼儿的学习兴趣,我采用了魔术游戏导入的方法。通过活动培养了幼儿的动手操作能力,开发了幼儿的想象力。

人教版六年级上册数学《圆的面积》教案 篇2

教学内容:人教版六数上第66页、67页

教学目标:

1. 了解圆的面积的含义,经历圆面积计算公式的推导过程,掌握圆的面积计算公式。能正确运用圆的面积公式计算圆的面积,并能运用圆面积的知识解决一些简单的实际问题。

2. 经历圆的面积计算公式的推导过程,体验实践操作、逻辑推理的学习方法。

3. 培养学生合作探究的意思,感悟数学知识的内在联系。 教学重点、难点:1.理解圆面积公式的推导过程.

2.会正确计算圆的面积。

教学准备:课件、圆面积演示器、分组实验材料(圆形纸片、胶水、剪刀)、两个大小不同的圆

教学过程:

(课前游戏)

猜谜:前面有一片草地(打一植物)

草地上来了一群羊(打一水果)

草地上有一群羊,突然来了一群狼(打一水果)

师:我发觉大家刚才猜谜语时第一个猜得最困难,第二个第三个猜时脱口而出,这是为什么呢?有了解决一种问题的难舍难分,就可以用这种经验解决类似的问题。数学学习中也常是这样的。

一、 导入:

师:请看屏幕,马总是被人们用一根缰绳拴在固定的地方,马就困惑了,它的活动范围有多大呢?它绕来绕去会在一个什么样的圈中?会形成什么样的形状?这个面有多大?面有多大,用数学上的语言或者词语描述就是指它的什么?这节课我们就来学习《圆的面积》。(板书课题)

二、 认识圆的面积:

1.师:老师这有一个圆,请看这个圆,什么是这个圆的面积呢?谁愿意上来比划比划?(出示教具)一学生上台比划。

师:圆表面的大小就叫做圆的面积。

2.师:老师还带来了一个圆,请你将这两个圆比较一下,你发现了什么?

生:一个圆面积大,一个圆面积小。

师:那你发现圆的面积大小会与什么有关呢?结合这两个圆来好好观察观察。

生:半径或者直径越长,圆的面积就越大。

师:看来大家都知道了圆的面积大小与半径或者直径有关,但圆的面积究竟怎么样来计算呢,下面我们就一起来探究下。

三、观察与尝试猜测:

1.(出示正方形与圆的课件)

师:我们先用一个简单的办法来猜想一下圆面积的公式。以圆的半径r为周长画一个正方形,再画这个的三个,你能计算出这个大正方形的面积是多少吗?在圆中再画一个小正方形,小正方形的面积又是多

少呢?

生:大正方形的面积是4r,小正方形的面积是2r。

2.师:圆与大正方形的面积相比,你发现了什么?再与小正方形相比,你又发现了什么?

生:圆的面积比大正方形的面积小,比小正方形的面积大。

师:那就是说圆的面积要比4r小,比2r大。那你猜一猜,圆的面积会是多少呢?

生:3r。

师:我们姑且先这样猜测圆的面积公式就是3r。大家究竟猜测的对与否,还需要验证。

四、 小组合作、拼摆。

1. 师:我们以前学习过平行四边形,你们还记得怎样计算平行四边形的面积吗?

生:底*高。S=ah。

师:还记得平行四边形的面积计算公式是如何推导出来的吗?

是这样的吗?我们来看一看。(演示)我们把平行四边形的左边割了一部分,补到平行四边形的右边,这样就把平行四边形转化成了长方形。那你们还能记得三角形的梯形的面积公式又是怎样推导出来的呢? 生:三角形和梯形转化成平行四边形再推导的。

师:这三种图形的面积公式都是先转化成以前学过的图形,再推导的。那我们能不能把圆转化成以前学过的'图形来推导圆的面积计算公式呢? 222222

2. 师:下面我们就来做一个实验,咱们把圆平均分成若干份,大家请看,每一份都像什么?

生:三角形或者等腰三角形。

师:对,它近似于一个等腰三角形。好的,同学生,我们可不可以用这些近似的等腰三角形拼成一个以前学过的图形呢?请你们拿出老师给你们准备好的工具开始吧!

提出要求:各组一定要认真整齐地拼摆。小组同学快速地合作完成,完成后坐好举手示意。

学生开始小组合作。

3. 汇报合作结果。

师:你们都拼成了什么样的图形?上台来展示一下吧。

生分组上台展示。

要求学生汇报自己是怎样拼的,拼成了一个什么图形。

师:刚才我们把圆平均分成了16份、32份,那如果分得份数越多,你会发现什么?

生:分得越多,越接近长方形。

五、 面积计算公式推导:

1. 师:这个近似的长方形是由这个大小一样的圆拼成的。这个圆的半径是r,那么这个近似的长方形的长和宽又是多少呢?请同学们同桌互相商量商量,开始吧!

2.师:找到答案了吗?

生:长是πr,宽是r。

师:长方形的面积呢?请同学们在练习本上写一写。

那圆的面积呢?也写一写,读一读吧。

学生汇报。师板书。

3.师:这个公式与我们之前猜测的做一下比较,你发现了什么?

4.师:通过这个公式,我们可以看出,要求圆的面积必须先知道什么呢?

生:半径。

师:知道什么也可以求出圆的面积呢?

生:直径、周长。

师:下面我们就来试一试吧!

六、 巩固练习。

1. 平方的口算练习。

1 2 3 4 5 6 7 8 9 10 20 3022222222222 2

2.马的活动范围题:半径为2米,求周长。学生在练习本上完成。

3.圆形花坛的直径是20米,求圆形花坛的占地面积。

学生先汇报思路,再在练习本上完成。

4. 树干的周长是125.6米,求树干的横截面积是多少?

学生先汇报思路,再在练习本上完成。

七、 总结:

师:这节课你有什么收获?圆在我们的生活中,很常见,请看这是什么?课后你会自己用卡纸剪出这样一个风车,并计算出它的面积是多少吗?

人教版六年级上册数学《圆的面积》教案 篇3

教材分析

圆的面积是六年级上册的内容,本单元是在学生掌握了直线图形的周长和面积,并且对圆已有初步认识的基础上进行学习的。从认识圆入手,到圆的周长和面积,与直线图形的学习顺序是一致的。但是,学习圆是从学习直线图形到学习曲线图形,无论是内容本身,还是研究问题的方法都有所变化。学生初步认识研究曲线图形的基本方法——“化曲为直”、“化圆为方”,同时也渗透了曲线图形与直线图形的内在联系,感受极限思想。在本单元中,本节内容安排在“认识圆,圆的周长”之后,这样可以让学生借鉴在学习圆周长时的经验来研究圆的面积;有利于让学生感悟学习平面图形的规律和方法。学习本节内容后,为后面学习扇形统计图、以及圆柱、圆锥打下基础;同时,圆在现实生活中的应用也非常广泛,能够运用所学知识解决实际问题。

学情分析

学生对圆的特征,多边形面积的.计算已基本掌握,但对于像圆这样的曲线图形的面积,学生是第一次接触,如何把圆转化成直线图形具有一定的难度。学生对探究学习并不陌生,但在探究学习过程中,往往是盲目探究,因此,组织学习素材,让学生形成合理猜想,进行有方向的探究也是教学中关注的问题。基于以上的思考,特制定以下教学目标:

教学目标

1、正确理解圆的面积的含义;理解和掌握圆的面积公式,会运用公式正确计算圆的面积。

2、经历圆的面积公式的推导过程,体验实验操作,逻辑推理的学习方法。

3、渗透转化的数学思想和极限思想。体验发现新知识的快乐,增强学生的合作交流意识和能力,培养学生学习数学的兴趣。

教学重点和难点

教学重点:运用公式正确计算圆的面积。

教学难点:圆面积计算公式的推导过程。

人教版六年级上册数学《圆的面积》教案 篇4

【教材分析】 探索圆的面积公式,教材共设计了两个教学活动。

一,估计飞镖版的面积。圆的面积的推导,需要将圆转化为学过的图形,而转化的关键要把圆等分为若干个小扇形,再剪拼。

二 ,小组合作探索圆的面积公式。先后呈现了将圆平分为4、8、16、32份。启发学生推理并得出:如果等分的份数越多,上下两条边越来越平越来越平,到最终就完全平了,拼出的图形就是一个长方形了。进而推导出圆的面积公式。使学生学会数学方法,渗透极限思想。

【教学建议】

圆的面积是学生以前认识了一些平面图形的特征及它们的周长和面积 的计算的基础上进行学习的。教材在编写时注意培养学生的实际操作能力, 通过观察、剪拼等活动,获得有关图形特征的深刻印象。通过联系和比较, 弄清图形间的联系,有效发展学生的想象力,有利于培养学生归纳、转化等 方面的能力,有助于学生树立几何动态观点。

【学法建议】 本节课让学生亲自动手操作发现新知,感受学习的乐趣。采取演示法,激活学生思维,使其形象、逼真的体验到公示的由来。

【教学目标】

知识技能

1理解圆面积计算公式的推导。让学生利用已有的知识,运用转化的思想方法,推导出圆面积的计算公式。

2初步运用圆面积计算公式进行圆面积的计算。

过程和方法

经历估算和小组合作操作﹑讨论等探索圆的面积的过程,培养学生逻辑推理能力。

情感﹑态度﹑价值观

通过圆面的剪拼,培养学生操作﹑观察﹑分析﹑的能力,渗透极限思想。

【教学重点】

圆面的剪拼,圆面积计算公式的推导

【教学难点】

极限思想的渗透,与公式的推导。

【教具学具】

投影仪,课件,等分好的圆形纸片。

【教学过程】

一、 创设情境,导入新课

(课件出示:绳长2米,小羊的活动面积有多大?)

师:请同学们观察这幅插图,说说从图中你能发现数学知识吗?

学生观察并讨论,然后指名回答。

师:同学们说得很好。请大家说说这个圆形的面积指的是哪部分呢? 生:小羊活动的范围就是这个圆形的面积。

师:这个圆的半径是多少?(2米)

师:小羊活动的面积到底有多大呢?这节课我们就一起来学习圆的面积。(板书:圆的面积)

师:你们能举起手中的圆形纸片比划它的面积吗?

生动手比划。(课件演示圆的周长,面积)

二、猜测感知。

(多媒体出示)

师:同学们看这是什么?

生:飞镖

师:仔细看图你能发现什么?

生:飞镖被平均分成20份,每份都像一个小三角形。

师:如果我们估算一下飞镖的面积,怎么办?

学生讨论,交流、汇报结果。

生1:把飞镖的表面看做是由20个小三角形组成的,每个小三角形的底约是周长的二十分之一,高可近似的看做圆的半径。先求出一个小三角形的面积,在求出20个小三角形的面积。

生2:我们把飞镖剪开,拼成近似的长方形。长方形的长约为圆周长的一半,宽可近似的看成圆的半径,然后用长方形的面积公式计算。

师:同学们的估计很有道理,但是在实际生活中往往要有一个精确的结果,我们接下来就来讨论计算圆面积的.方法。

三、 探索规律,解决问题。

1、 由旧知引入新知

师:大家还记得我们以前学习的平行四边形、三角形、梯形面积是用怎样的方法推导出来的吗?(课件演示平行四边形转化成长方形的过程并板书。)

师:那么圆的面积也可以转化成我们学过的某一图形的面积来计算 今天我们先探究能不能把圆的面积转化成长方形或平行四边形的面积来计算。

2、 探索圆面积公式

师:拿出我们准备好的圆形剪一剪,拼一拼,看看能拼成为一个什么图形?并考虑你拼成的图形与原来的圆形有什么关系?(同学们开始操作,教师巡视)

(A)四分法:认识拼后有两条边直的,但是上下却凹凸不平弯弯曲曲,不过有点平行四边形的轮廓。

(B)八分法:比较与四分法时的变化。让学生认识到与刚才拼成的差不多,但上下平多了,像平行四边形了。

(C)十六分法 :课件演示,上下更平,更像长方形。

(D)三十二等分:比刚才十六等分怎样?(更平更直,简直就是长方形。)

(E)比较四副图,拼出的图形发生了怎样的变化?

(F)讨论:电脑帮助我们把圆分成32等分,还能分吗?究竟能分多少份呢?

(分的份数是无限的。如果等分的份数越多,上下两条边越来越平越来越平,到最终就完全平了,拼出的图形就是一个长方形了。)

师:下面请大家观察课件的演示和板书,能否说说平行四边形或者长方形的面积与圆面积之间的关系?并说出你的理由。(生说,教师板书)

生1:因为拼成的平行四边形的底也就是圆形周长的一半;平行四边形

的高就是圆形的半径。而平行四边形面积=底×高,那么圆形面积公式=圆周长的1/2×半径即可。

生2:因为拼成的长方形的长也就是圆形周长的一半,长方形的宽就是圆形的半径。而长方形面积=长×宽,那么圆形面积=圆周长的1/2×半径即可。(课件演示)

师:用字母怎么表示圆面积公式呢?

生:S=∏×R×R

生:还可以写作S=∏×R2(R2表示R×R,读作:R的平方)

师:这说明求圆的面积只需要知道半径即可,那我只告诉你们圆的直径或周长能求圆的面积吗?

3、 应用圆面积公式

师:现在请大家用圆面积公式计算小羊的活动面积有多大。

四、 巩固练习。

1 、完成课本第89页"练一练"第1、2、3题

2.求下面各圆的面积。

r=2(单位:分米) d=6(单位:分米)

3思考题:

已知正方形的面积是16平方米,求圆的面积。

五、总结

这节课你学会了什么?

学生自由发言。

小结:今天我们一起研究了圆的面积,成功的推导出来了圆的面积计算公式,并学会了应用。希望同学们在学习中更好的运用转化的方法去学习更多的数学知识。

人教版六年级上册数学《圆的面积》教案 篇5

【教学内容】

圆的面积

【教学目标】

知识与技能:通过操作,使学生理解圆的面积公式推导过程,掌握求圆的面积的方法并能正确计算。

过程与方法:激发学生参与整个课堂教学活动的学习兴趣,培养学生的分析、观察和概括能力,发展学生的空间观念。

情感、态度与价值观:培养学生的空间观念。

【教学重难点】

重点:

1、理解圆的面积公式的推导过程。

2、掌握圆的面积的计算公式,能够正确地计算圆的面积

难点:理解圆的面积公式的推导过程。

【知识回顾】

1、还记得这些平面图形的'面积计算公式吗?

2、平行四边形的面积公式推导过程还记得吗?

我们是通过剪拼的方法把它转化成长方形的。

【新知探究】

(一)、定义:

1、请你摸一摸哪里是圆的面积?

2、师:圆所占平面的大小就是圆的面积。

引导学生操作:

师:(拿出一个圆片)我们怎么剪?圆的大小是由什么决定的?(直径、半径)

生:(圆的大小由直径或半径决定。)沿直径或半径剪。

师剪第一刀,再问:第二刀怎么剪?

师:我们要把圆通过剪成多份并用拼的方法转化成学过的规则图形,为了计算上的方便,我们把圆平均分成多份。

将一个圆分别平均分成2份、4分、8分、16份,分别罗列排好。请学生观察四组图。

师:随着等分份数的不断增加,你有什么发现吗?

A:随着等分份数的不断增加,曲线越来越直。

B:随着等分份数的不断增加,每一小份越来越接近三角形。

(三)拼摆推导面积公式。

1、拼摆

师:把圆转化成什么图形?我们来试一试。

学生操作,演示学生的作品。

师:转化后的图形面积与圆的面积有什么关系?面积不变。

课件出示:把圆等分成不同等份时的图形的趋势。

2、推导面积公式

小组讨论:长方形各部份相当于圆的什么?

请你推导圆的面积公式。

学生汇报:(2~3名学生说,老师说,全班说推导过程)

(4)学生齐读圆面积公式(S=πr2)。并说说圆面积的大小与什么有关?(半径)给直径怎办?(先求出半径,再求面积)

【设计意图】在这个环节教师成为学生的学习伙伴,在教师的引导和启发中,让每个学生都动口,动手,动脑,培养学生学习的主动性和积极性。创造一个和谐、高效的学习氛围。

【知识梳理】

本节课学习了什么知识?

【随堂练习】

1、根据下面所给的条件,求圆的面积。

(1)、半径2分米

(2)、直径10厘米

2、一个雷达屏幕的直径是40厘米,它的面积是多少平方厘米?

3、判断对错:

(1)圆的半径越大,圆所占的面积也越大。()

(2)圆的半径扩大3倍,它的面积扩大6倍。()

人教版六年级上册数学《圆的面积》教案 篇6

一、教材内容:

本节课内容是求圆的面积

二、教学目标:

知识目标:

⑴引导学生通过观察了解圆的面积公式的推导过程

⑵帮助学生掌握圆的面积公式,并能应用公式解决实际问题、

能力目标:使学生了解从“未知”到“已知”的转化过程,逐渐培养学生的抽象思维能力。

情感目标:通过实例引入,让学生体验数学来源于生活,又服务于生活;向学生展示生动、活泼的数学天地,唤起学生学习数学的兴趣,使全体学生积极参与探索,在参与中体验成功的乐趣。

三、教学重点难点:

重点:圆的面积公式的推导过程以及圆的面积公式的应用。

难点:在圆的面积公式推导过程中,学生对圆的无限平均分割,“弧长”无限的接近“线段”的理解以及将圆转化为长方形时,长方形的长是圆的周长的一半的理解。

四、教学流程

1、复习迁移,做好铺垫

师问:

(1)长方形面积公式

(2)平行四边形面积公式

师:平行四边形面积公式的求法是借住谁来推导出来的?

2、创设情景,引入课题

用多媒体出示:一只小牛被它的主人用一根长2米的绳子栓在草地上,问小牛能够吃草的面积有多大?

问题:

(1)小牛能够吃草的最大面积是一个什么图形?

(2)如何求圆的面积呢?

3、师生互动,探索新知

(1)师:平行四边形面积可以转化成长方形面积,那么圆的面积该怎么办呢?

(2)让学生动手操作:

教师将课前准备好的圆分给各小组(前后四人为一组)。请同学们试试看,将圆转是否可以化成我们已学过的图形,并求出它的面积。

(3)让学生转化的过程进行展示。(略)(多组学生展示)

(4)用多媒体进行验证。

让学生闭起眼睛想一想是不是分得的份数越多拼成的图形越接近于长方形。

师:若把圆平均分得的份数越多,拼成的'图形就越接近于一个长方形,它的面积也就越接近了这个长方形的面积。

(5)引导归纳:

思考1:既然圆的面积无限接近于长方形。那么我们如何根据长方形的面积来推导圆的面积公式呢?

思考2:长方形的长、宽与圆有什么关系呢?

再次多媒体展示动画。

师:若圆的半径为r,则圆的周长为2πr,从而得出长方形长=πr,宽=r,

即:圆的面积=长方形的面积=长×宽=πr×r

得到:s圆=πr×r

师:要求圆的面积必须知道什么条件?若不知半径必须先求出半径再求出圆的面积。

4、实际应用,强化新知

(1)利用公式解决实际问题:求小牛吃草的最大面积是多少?

师:强调书写格式:a写出公式b代入数字c计算结果d写出单位。

(2)出示例题:

例题1:已知一个圆的直径为24分米,求这个圆的面积?

a、让学生独立练习,b、指名板演,c、师生评议。

例2、一个圆形花坛,周围栏杆的长是25、12米,这个花坛的种植面积是多少?(π≈3、14)

a、学生独立练习,b、指名板演,c、师生订正。

师:引导学生对三道题进行分析比较,归纳出求圆的面积方法。

5、巩固练习,深化新知

1、判断题

(1)圆的半径扩大到原来的3倍,圆的面积也扩大到原来的3倍。()

(2)半径为2厘米的圆的周长与面积相等。()

2、把边长为2厘米的正方形剪成一个最大的圆,求这个圆的面积。

3、一块直径为20厘米的圆形铝板上,有2个半径为5厘米的小孔,这块铝板的面积是多少

6、课内总结,梳理新知

师:(1)本节所学的主要公式是什么?

(2)如果求圆的面积,必须知道什么量?

(3)已知圆的周长、圆的直径是否也可以求圆的面积呢?如何求。

7、布置作业

人教版六年级上册数学《圆的面积》教案 篇7

【教学内容】

【教学目标】

知识与技能:

1、了解圆的面积的含义,经历圆面积计算公式的推导过程,掌握圆面积计算公式。

2、能正确运用圆的面积公式计算圆的面积,并能运用圆面积知识解决一些简单实际的问题。

过程与方法:

1、通过操作、观察,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。

2、通过小组合作交流,培养学生的合作精神和创新意识,提高动手实际

和数学交流的能力,体验数学探究的乐趣和成功。

情感态度价值观:

1、在估一估和探究圆面积公式的活动中,体会"化曲为直"的思想,并渗透极限、转化的数学思想。

2、培养学生观察、分析、推理和概括的能力,发展学生的空间观念。

【教学重点】 圆面积概念的建立,公式的推导及应用。

【教学难点】 理解把圆转化为平行四边形、长方形推倒出圆的面积的计算公式的过程。

【教学关键】 弄清圆与转化后的近似图形之间的关系。

【教具准备】 投影仪,多媒体课件。

【学具准备】 剪刀、刻度尺、两张圆形纸片。

【教学过程】

一、创设情景,提出问题

1、多媒体出示:学校草坪中间的"喷水喉"洒了一圈水。

师:看了刚才的演示,你想提出哪些与数学有关的问题?

(结合学生的提问,抓住有关周长和面积的问题,引导学生区分圆的周长和面积,同时引出课题"圆的面积")

2、"圆面积"的.含义:圆所占平面的大小叫做圆的面积。

教师:你们想知道这样一个自动喷水头它喷射一周浇灌的农田面积是多少吗?这节课我们就来学习如何求喷水头转动一周浇灌的面积有多大。 (板书:圆的面积)

二、自主探究,合作交流

1、猜想:

(1)出示大小不同的两个圆,让学生比较,猜想圆面积的大小和什么有关?(半径)那么圆的面积和半径的关系究竟是怎么样的呢?

(2)出示边长和大圆直径相同的正方形,和大圆比较,你发现了什么?(重叠后,大圆刚好能够放进正方形里面)这说明了什么?(边长=2r)

引导学生将大正方形分割成四个小正方形,观察比较(每个小正方形的面积是r2,大正方形的面积就是4r2,圆的面积比4r2小,可能比3r2大。)

2、验证:

(1)引导转化:

师:猜想只能是大致的估计,圆的面积公式需要同学们动手推导出来。回忆一下,以前学过的平面图形(课件出示),它们的面积公式是什么?分别怎么推导出来的?

以上这些图形都是通过剪拼转化成已学过的图形,再进行推导。那么圆是否也可以把它剪拼转化成为熟悉的平面图形,推导面积公式呢?你能猜一猜吗?(长方形、正方形、平行四边形、三角形、梯形)

(2)动手操作:

①分小组动手操作,把圆平均分成若干份,剪开后,拼成其他图形,看谁拼得好,拼出的图形多。

②展示交流并介绍:你是怎样拼接的?拼出来的图形近似于什么?为什么只能说是"近似"?能不能把拼出的图形的边变直一点?

学生回答,课件演示(以拼成的近似长方形为例,平均分成32份、64份)想象一下,平均分成128份、256份……会是什么情形?

③小结:分的份数越多,拼成的图形越接近于长方形。

(3)动手推导:

①引导:当圆转化成近似的长方形后,圆和它有什么联系呢?(近似长方形的长和宽与圆的周长和半径有什么关系?)如果圆的半径是r,这个近似长方形的长和宽各是多少?如何根据已经学过的长方形的面积公式,怎样推导出所要研究的圆的面积公式?

②学生讨论交流:长方形的长是圆周长的一半,即C/2=2πr/2=πr,宽是圆的半径。(教师板书 )

质疑:为什么不能把圆转化成一个近似的正方形吗?(用假设法,如果圆能拼成近似的正方形,那么它的其中一条边是圆周长的一半,另一条是圆的半径。而无论哪个圆,它的半径都不可能与圆周长的一半相等。)

你还能用其他更简洁的方法推导圆的面积吗?

学生1:用圆的1/4拼成一个近似的小平行四边形

学生2:圆的1/16就是一个近似的小三角形

学生3:

③归纳评价:通过把圆转化成近似的长方形、平行四边形、三角形,或先算出其中的一小份再求出总的面积的方法,都能推导出圆的面积公式:S =πr2

你认为哪种推导方法最好呢?为什么?

理解r2的含义并口答:62、72、102、0.52

(4)情景延续:

①如果"喷水喉"的最远射程是5米,你可以自己来回答刚才提出的问题吗?(学生求周长和面积)

②由于改进技术,"喷水喉"的最远射程是原来的2倍,那么它的喷洒面积也是原来的2倍。对吗?(学生回答)

3、学生自做68页例题。

4、小结:同学们通过大胆猜想和动手验证,终于得到了圆面积的计算公式,老师祝贺大家取得成功!那么,求圆的面积需要什么条件呢?(半径)是否只有知道半径才能求圆的面积?(学生回答)

三、拓展应用

第一关:

(1)圆的周长计算公式为( ),圆的面积计算公式为( )。

(2)一个圆的半径是3厘米,求它的周长,列式( ),求它的面积,列式( )。

(3)一个圆的周长是18.84分米,这个圆的直径是()分米,面积是()平方分米。

第二关:

(1)半径是2厘米的圆,周长和面积相等()

(2)一个圆形纽扣的半径是1.5厘米,它的面积是多少?列式:3.14 X 1.52=3.14 X 3=9.42平方厘米。()。

(3)直径相等的两个圆,面积不一定相等。( )

(4)一个圆的半径扩大3倍,面积也扩大3倍。( )

(5)两个不一样大的圆,大圆的圆周率比小圆的圆周率大。()

第三关:

(1)如图,绳长2.17米,问小狗的活动面积有多大?

(2)北京天坛公园的回音壁是世界闻名的声学奇迹,它是一道圆形围墙。圆的直径约为65.2米,周长和面积分别是多少?(结果保留一位小数)

同学们,经过一番激烈的竞争,个个都是最棒的,我们在以后的学习中还应发扬竞争精神,合作学习,争取更大进步!

四、课下实践练习:

圆形的物体生活中随处可见,公园的露天广场是个圆形,怎样才能计算广场的面积呢?你有哪些方案?

板书设计:

3圆 的 面 积

长方形的面积=长×宽

圆的面积 = πr×r =πr2

S = πr2

人教版六年级上册数学《圆的面积》教案 篇8

一、教材内容分析

新人教版上册《圆的面积》这部分内容是平面几何的最后阶段,它既是前面所学直观地认识平面图形及有关计算的延续和发展,又为今后逐步由实验几何阶段转入论证几何阶段作了渗透和准备。因此,在教学时,主要是让学生用转化的思想进行操作、观察和比较,推导圆的面积计算公式。并让他们初步学会用确切、简明的数学语言表述概念的本质特征,引导学生初步接触归纳推导出公式并理解和掌握公式的应用,为以后进一步学习打下基础。

二、学习者特征分析

六年级的学生已掌握了长方形、平行四边形、三角形、梯形的面积公式的推导方法,具有一定的转化和类比推理能力,并具对圆和圆的周长知识已经有了初步的掌握,有强烈的好奇心。因此,易于在转化和类比推理方面进行启发和引导,让学生利用已有的知识和经验,实现《圆的面积》公式的推导,但由于圆是由一条曲线围成的图形,学生很难跟以往由几条线段围成的图形之间建立必然的联系。因此,在利用转化和类比推理基础上,结合操作演示,让学生在学习圆面积公式的推导过程中,提高学习兴趣,掌握学习方法,增加感性的认识,从而真正掌握圆的面积公式的推导过程。并且能应用公式解决一些生活实际问题。

三、教学目标(知识,技能,情感态度、价值观)

1、利用学生已有的知识,引导学生通过观察、操作、分析和讨论,推导出圆的面积公式,并能运用公式解答一些简单的实际问题。

2、使学生经过“感知——动脑——观察——合作探究”等系列活动.逐渐培养学生的抽象思维能力。

3、通过实例引入,让学生体验数学来源于生活,又服务于生活;向学生展示生动、活泼的数学天地,唤起学生学习数学的兴趣,使全体学生积极参与探索,在参与中体验成功的乐趣。使学生感受到生活中数学的魅力,让学生体会图形转化的神奇和美。

四、教学策略选择与设计

1、注重情境创设,有意识地激发学生学习知识的兴趣

数学来源于生活,通过实际情境,既创设了生动的生活情境,激发了学生参与的兴趣,又为后继学习和深入探究埋下了伏笔。而且在直观的动画情境中很好地展示了圆的面积概念。使学生体会到实际生活中计算圆的面积的必要性,同时也激发了学生求知的欲望和学习兴趣。

2、 注重实践操作,有意识地培养学生获取知识的能力

学习是学生的内部活动,因此,在课堂教学中既要重视其学习结果,更要重视其学习过程,学生的创造潜能,存在于学习过程、探究过程之中,而不存在于数学结论中,只有实实在在的'学习过程、思维过程、探究过程,才能有所创造,培养学生自己探索获取知识的能力。这节课的教学,紧紧抓住“圆面积公式的推导”这一教学重点,敢于放手让学生自己动手操作,归纳整理。通过学生的剪拼,转化,利用等积变形把圆面积转化成了其他的平面图形,进而归纳、概括出圆面积的计算方法。这种多角度的思考,既沟通了新、旧知识的联系,又激发了学生的求知欲,使学生不仅知其然,更知其所以然。

3、 注重学法指导,有意识地引导学生应用转化的方法

本节课中,在求圆面积公式时,不是教师灌输式地教会学生S =πr,而是由学生在原有知识经验的基础上,通过“观察——猜测——操作——分析——探究”, 并在老师的引导下,利用“转化”的思想,将圆变成已学的图形:长方形、三角形、梯形。通过学生自主动手剪拼,然后研究两者之间的联系,实现《圆的面积公式》的推导,从而推导出圆面积公式。整节课,始终围绕这个主题,从创设生活情境,到提出研究的方向与方法,最后引导学生推导出公式,教师只作为组织者、指导者和参与者,适当进行点拨,使学生不但“学会”,而且“会学”。从而培养了学生的空间想象力,又发展了学生的逻辑思维推理能力。

4、 注重媒体应用,有意识地突破学生学习知识的难点

利用计算机和动画课件,辅助课堂教学,有其直观、形象而又生动的特点,它能使静态的画面动态化,抽象的内容形象化,同时还不受时间和空间的限制。这节课恰当地运用了多媒体课件演示,充分调动了学生的学习兴趣,提高了课堂教学的效率,是其他教学手段无法比拟的。

五、教学环境及资源准备

用多媒体课件,圆形卡片辅助教学

六、教学过程

1、什么是圆的面积?

(1)涂出一个圆的面积

(2)用自己的话说什么是圆的面积?

2、回忆平行四边形、三角形、梯形的面积计算公式用什么方法推导的?

3、能不能用剪、拼的方法把圆转换成我们学过的图形?

4、学生拿附页1进行剪拼,看能转换成我们学过的什么图形?

5、学生汇报后,课件演示。

6、得出结论:分的等份数越多,拼出的图形越接近长方形,无限地分下去,最终拼出的图形就是长方形、

7、转化后的长方形的长和宽与原来的圆有什么关系?

小组合作学习,讨论以下两个问题:

1) 转化后长方形的长相当于什么?宽相当于什么?

2) 你能从计算长方形的面积推导出计算圆面积的公式吗?

8、汇报讨论结果。

9、运用新知识,解决问题。

1)r=5cm,求圆的面积

2)课始主体图中的问题

总结

小结本课知识,提出要求,希望大家能运用我们今天的所学所得解决我们生活中遇到的更多问题。

总之,这节课,我力图从学生已有的知识背景出发,采取观察操作、合作探究的学习方式,帮助学生再实践活动中理解概念,掌握知识形成技能,让课堂充满活力,让学生真正成为学习的主人。

人教版六年级上册数学《圆的面积》教案 篇9

一、教学目标

【知识与技能】

掌握圆的面积计算公式,并能利用公式正确解决简单问题。

【过程与方法】

通过操作、观察、比较等活动,自主探索圆的面积计算公式,渗透转化的数学思想方法。

【情感、态度与价值观】

感受数学与生活的联系,激发学习兴趣。

二、教学重难点

【教学重点】

圆的面积计算公式。

【教学难点】

圆的面积计算公式的推导过程。

三、教学过程

(一)导入新课

创设情境:呈现校园中的圆形草坪,提问学生如何求解圆形草坪的占地面积。引导学生通过已有认知,认识到解决这个问题实际就是求这个圆的面积,从而引出课题。

(二)讲解新知

提出问题:之前的.图形面积公式是如何推导的?

学生通过回忆,讨论,得到是通过转换成学过的图形来推导得到的。

追问:能否将圆的图形转换成之前的图形?

组织学生动手操作、合作探究,四人为一小组,讨论分享自己的思路与剪拼过程,然后请各组的代表进行全班交流。

预设1:将圆平均分成4份,剪切拼接之后,没有得到之前图形;

预设2:将圆平均分成8份,剪切拼接之后,得到一个近似平行四边形;

预设3:将圆平均分成16份,剪切拼接之后,得到一个近似长方形。

老师在此基础上进行展示:大屏幕展示将圆平均分为32份,64份,128份,256份……的动图,让学生观察其特点。

学生能够发现圆平均分的份数越多,拼成的图形越接近于长方形。

进一步追问:观察原来的圆和转化后的这个近似长方形,发现他们之前有哪些等量关系?

预设1:长方形的面积等于圆的面积;

预设2:长方形的长近似等于圆周长的一半;

预设3:长方形的宽近似等于圆的半径。

人教版六年级上册数学《圆的面积》教案 篇10

教学目标

1.知识与技能

⑴使学生能根据具体条件,比较灵活地计算圆的面积。

⑵使学生认识圆环,学会求圆环面积的计算方法。

2.过程与方法

培养学生主动探究、合作交流、解决问题的方法和能力。

3.情感态度与价值观

培养学生应用圆的周长公式和面积公式解决一些与生活相关的实际问题,进一步认识图形和生活的联系,感受平面图形的学习价值。提高数学学习的兴趣和学好数学的自信心。

教学重点、难点

求圆环面积的计算方法。

教学过程

一、情景启发,明确目标

1.展示20xx年5月21日日环食视频(附件:日环食视频)。引出课题:圆环面积

简单介绍圆环的形成。

2.课件展示:生活中的圆环,感受生活美。

3.复习:圆的面积怎样计算呢?

(1)、已知圆的半径为2cm,求圆的面积。

(2)、已知圆的直径为6cm,求圆的面积。

4.简单介绍圆环的相关名称及关系:

5.请找出下面圆环的内圆半径(r)或外圆半径(R):

二、合作探究,达成目标

大家动笔算一算。

光盘的银色部分是一个圆环,内圆半径是2cm,外圆半径是6cm。它的面积是多少?

圆环面积=外圆面-内圆面积

3.14×62 - 3.14×22 3.14×(62 – 22)

= 3.14×36 - 3.14×4 = 3.14×(36 – 4)

= 113.04 – 12.56 = 3.14×32

= 100.48(cm2)= 100.48(cm2)

答:它的面积是100.48cm2.

比较、分享。求环形的面积,你喜欢那种方法?

S环=πR2-πr2 S环=π(R2-r2)

三、变式练习,检测目标

1.填空:

2.一个圆形环岛的直径是50m,中间是一个直径为10m的圆形花坛,其它地方是草坪。草坪的占地面积是多少?

3.14×(50÷2)2-3.14×(10÷2)2

=3.14×252-3.14×52

=3.14×625-3.14×25

=1962.5-78.5 3.14×[(50÷2)2-(10÷2)2]

=1884(m2)= 3.14×[252-52]

= 3.14×[625-25]

= 3.14×600

=1884(m2)

答:草坪的占地面积是1884m2.

3.某公园内有一座圆形喷水池,它的半径是3m。现在要在喷水池周围铺上1m宽的甬路。甬路的占地面积是多少m2?

外圆半径:1+3=4(m)

环形面积:3.14×(4-3)

=3.14×(16-9)

=3.14×7

=21.98(m)

答:甬路的占地面积是21.98m2.

4.环形的外圆周长是18.84cm,内圆直径是4cm,求环形的面积

3.14×[(18.84÷3.14÷2)2-(4÷2)2]

=3.14×[32-22]

=3.14×[9—4]

=3.14×5

=15.7(cm2)

答:环形的面积是15.7cm2。

四、评讲总结,升华目标

这节课你学习了什么内容?你有哪些收获?让生说说。师用课件再现一次。

1、什么样的图形是圆环。

2、怎样计算圆环的面积。

五、课堂达标:解决问题

1.土楼是福建、广东等地区的一种建筑形式,被列为“世界物质文化名录”,土楼的外围形状有圆形、方形椭圆形等。圭峰楼和德逊楼是福建省南靖县两座地面是圆环形的土楼,圭峰楼外直径是32m,内直径是12m。土楼的房屋占地面积是多少m2?

2.天安门广场前面有一个大型喷泉,喷泉的.半径为3m。国庆节快要到了,园艺师傅们在喷泉的周围摆放了4m宽的鲜花。(1)鲜花所占面积有多大?(2)如果每平方米摆放鲜花需要50元,那么摆放这些鲜花至少需要多少元

外圆半径:4+3=7(m)

环形面积:3.14×(7-3)

=3.14×(49-9)

=3.14×40

=125.6(m)

答:鲜花所占的面积有125.6m 。

3.拓展延伸:求下列图形的阴影部分面积。(单位:cm)

(1)、大半圆的面积

3.14×[(2+4)÷2]2÷2

=3.14×9÷2

=14.13(cm2)

(3)、小半圆的面积

3.14×(2÷2)2÷2

=3.14×1÷2

=1.57(cm2)

答:阴影的面积是6.28cm2.

六、布置作业

1、右图是一块玉璧,外直径是18cm,内直径是7cm.这块玉璧的面积是多少?

2、右图中的大圆半径等于小圆的直径,请你求出阴影部分的面积。

3、计算下图涂色部分的面积。(单位:厘米)

七、课后反思

1.本课时的教学从学生熟悉的事例出发,创设情景,使学生基本掌握了本课的知识点,并培养了学生的民主、合作精神。

2.在整节课中,自己也明白了:教师是主导,学生是主体。充分调动学生的积极性,让学生积极参与;鼓励学生在探索的过程中,用自己喜欢的方法解决简单的实际问题;让学生体验解决问题策略的多样性,培养并发展了学生的观察能力、创新精神。

人教版六年级上册数学《圆的面积》教案 篇11

一、激趣导入

1、课件出示牧羊图,让学生欣赏,并找一找你认识的平面图形。图画内容:把一只羊用一根2米长的绳子拴在树桩上吃草。

2、谈话:同学们,羊能够吃草的最大范围是什么形状?羊能够吃到多大面积的草呢?你们想知道吗?今天这堂课我们就一起来学习“圆的面积”这一知识,相信上完这一课,大家一定能够解决这个问题。[板书:圆的面积

3、看到这个课题,你想知道些什么?

学习目标:

(1)了解什么是圆的面积;

(2)了解与哪些因素有关;

(3)知道圆面积公式的推导过程,掌握圆面积的计算公式,会计算圆的面积。

二、实践导学

(一)认识圆的.面积

1、什么叫圆的面积。

2、小组讨论

3、圆的大小主要与哪些因素有关?

(1)半径;

(2)直径;

(3)周长。

(二)回忆平行四边形面积公式推导过程

1、指名分别说出平行四边形面积公式推导过程。(然后课件展示)

2、谈话:我们能不能也象求平行四边形面积公式一样将圆转化成已学过的图形来求面积呢?

3、小组讨论

(三)操作探究

1、转化圆形推导公式

(1)让学生拿出卡纸(1),观察卡纸(1)上的圆被等分成多少分,圆被转化成什么图形?

(2)让学生拿出卡纸(2),观察卡纸(2)上的圆被等分成多少分,圆又被转化成什么图形?

(3)教师课件展示圆被平均分成16等份后转化的图形。

(4)观察比较,你有什么发现?

2、引导学生观察比较,推导圆面积计算公式。

(1)将圆通过剪拼,可以转化成已经学过的什么图形?

(2)新的图形与原来的圆有什么联系?

(3)试推导圆的面积公式。(课件展示)

长方形的面积=长×宽

圆的面积=c÷2×r=2πr÷2×r=πr2

s=πr2

三、练习巩固

1、运用公式学习例1、

学生试做,说根据,总结强调。

2、完成基本练习(做一做)

四、拓展提高

1、解决“小羊吃草”问题

人教版六年级上册数学《圆的面积》教案 篇12

教学目标:

1、在初步认识圆柱的基础上理解圆柱的侧面积和表面积的含义,掌握圆柱侧面积和表面积的计算方法,会正确计算圆柱的侧面积和表面积。

2、通过实践操作,在学生理解圆柱侧面积和表面的含义的同时,能解决一些有关实际生活的问题。

教学重点,难点:

掌握圆柱侧面积和表面积的计算方法。

运用所学的知识解决简单的实际问题。

教学过程:

一、引入新课:

前一节课我们已经认识了一个新朋友——圆柱,谁能说说这位新朋友长什么样子以及有什么特征吗?

1.圆柱是由平面和曲面围成的立体图形。

2.圆柱各部分的名称(两个底面,侧面,高)。

3.把圆柱的侧面沿着它的一条高剪开得到一个长方形,这个长方形的长等于圆柱的底面周长、宽等于圆柱的高。

同学们对圆柱已经知道得这么多了,还想对它作进一步的了解吗?今天我们就一起来研究怎样求圆柱的表面积。

二、探究新知:

以前我们学过正方体、长方体的表面积,观察一个长方体,我们是怎么求这个长方体的表面积的呢?(六个面的面积和就是它的表面积)

同学们想一想我们要求圆柱的表面积,那么圆柱的表面积指的是什么?

教师引导,学生讨论结果:圆柱的侧面积加上两个底面的面积就是圆柱的表面积。

板书:(圆柱的表面积=圆柱的侧面积+两个底面的面积)

1.圆柱的侧面积

(1)圆柱的侧面积,顾名思义,也就是圆柱侧面的面积。

(2)出示圆柱的展开图:这个展开后的长方形的`面积和圆柱的侧面积有什么关系呢?

(学生观察很容易看到这个长方形的面积等于圆柱的侧面积)

(3)那么,圆柱的侧面积应该怎样计算呢?(引导学生根据展开后的长方形的长和宽与圆柱底面周长和高的关系,可以知道:圆柱的侧面积=底面周长×高)

2.侧面积练习:练习二第5题

学生审题,回答下面的问题:

这两道题分别已知什么,求什么?

小结:要计算圆柱的侧面积,必须知道圆柱底面周长和高这两个条件,有时题里只给出直径或半径,底面周长这个条件可以通过计算得到,在解题前要注意看清题意再列式。

3.理解圆柱表面积的含义.

(1)让学生把自己制作的圆柱模型展开,观察一下,圆柱的表面由哪几个部分组成?(通过操作,使学生认识到:圆柱的表面由上下两个底面和侧面组成。)

(2)圆柱的表面积是指圆柱表面的面积,也就是圆柱的侧面积加上两个底面的面积。

公式:圆柱的表面积=圆柱的侧面积+底面积×2

4.尝试练习。

(1)求下面各圆柱的侧面积。

①底面周长2.5分米,高0.6分米。

②底面直径8厘米,高12厘米。

(2)求下面各圆柱的表面积。

①底面积是40平方厘米,侧面积是25平方厘米。

②底面半径是2分米,高是5分米。

5.小结:

在计算圆柱形的表面积时,要根据给定的数据计算各部分的面积。(如:有时候给出的是底面半径,有时是底面直径。)

三、巩固练习。

1.做第14页“做一做”。(求表面积包括哪些部分?)

2.练习二第6,7题。

四、课后思考。

同学们想一想是不是所有的圆柱在计算表面积时都可以用

公式:圆柱的表面积=圆柱的侧面积+底面积×2来计算呢?

人教版六年级上册数学《圆的面积》教案 篇13

教学目标:

1、通过学生操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。

2、在圆面积计算公式的推导过程中,通过让学生观察“曲”与“直”的转化,向学生渗透极限的思想。

3、通过小组会议交流,培养学生的合作精神和创新意识。

教学重点:

推导出圆的面积公式及其应用。

教学难点:

圆与转化后的'图形的联系。

教具、学具:剪刀、图片,圆片4等份……64等份的拼图对比挂图

教学过程:

一、以新引旧、导入新课

1、以前我们学过哪些平面图形的面积?

2、长方形的面积怎样计算?

3、回忆一下平面四边形的面积公式是怎样推导的?

4、小结:我们总是把新的图形经过剪、拼“转化”成已经学过的图形来推导面积公式的。

5、转化后的图形与原来的图形面积相等吗?

6、(出示图形):这是什么图形?圆和我们以前学过的平面图形有什么不同?

7、那些圆能不能转化成以前学过的平面图形呢?它的面积计算公式该怎样推导呢?这是我们这节课要学习的内容

人教版六年级上册数学《圆的面积》教案 篇14

“圆的面积”说课设计教学重难点及教法说明 说课内容是全日制小学数学课本第十二册"圆的面积"。本课是在学生已经掌握长方形面积的基础上,通过直观、演示,把圆分割成若干等份,再拼成一个近似的长方形,然后由长方形面积公式推导出圆面积的计算公式。

圆的面积是本单元的教学重点,也是今后进一步学习圆柱体,圆锥体等知识的基矗本节课的教学目的要求是:

1.通过学生操作、观察推导出圆面积的计算公式,并能运用公式正确计算圆的面积。

2.通过教学培养学生初步的空间观念。

3.渗透转化数学思想。本节课的教学重点是观察操作总结圆面积公式。难点是理解公式的推导过程。关健是弄清圆与转化后的近似长方形之间的关系。本课教学,采用直观演示和学生动手操作等方法,充分运用电教媒体辅助教学,由圆转化为近似的长方形,总结出圆的面积公式,并能在实际中加以运用。

本节课分四个环节来设计教学。

第一个环节:复习导入新课 为了激发学生的学习兴趣,在计算机的屏幕上显示出一个红颜色的圆,请同学看这圆一周的长度叫什么?这个圆所占平面的大小又叫什么?引出课题"圆的面积"。

第二个环节:新授 教学中,运用转化的方法,将未知转化为已知,不仅可以化繁为简,化难为易,而且可以勾通知识之间的联系。可以帮助学生理解新知识,提高课堂教学效率。鉴于此,新授部分我是这样设计的。

(一)公式的推导

1.准备题请同学们回忆平行四边形的面积计算公式是怎样推导出来的。再想想,三角形、梯形又都是转化成哪一种图形推导出它们的面积计算公式的。本课就用这种转化的方法来推导圆面积的计算公式。

2.推导圆面积公式

第一层次教授转化的方法。让学生看屏幕上的圆,老师把它平均分成8份,先把上面的4等份和下面的4等份分开,再交叉地拼在一起,看看,拼成了一个什么图形的近似图形?为什么说是近似的平行四边形呢?让学生继续观察,我们将其中左边的一个等份再平均分成2份,将一小份移到右边拼起来,现在拼成的图形近似什么图形?由圆转化成近似的长方形,什么发生了变化,什么没有变?

第二层次运用转化方法让学生进行操作,再通过演示渗透极限思想。让学生拿出准备好的16等份的圆,利用刚才的方法把它剪开拼成一个近似的长方形。观察一下,拼成的近似的长方形与屏幕上8等份的比较一下,哪个更接近于长方形,为什么?如果我们把一个圆等分成32份,拼成的长方形会怎样呢?(屏幕上演示)这时引导学生思考:我们刚才是把一个圆平均分成8份、16份、32份,如果再继续分下去,分的份数更多,拼成的图形你会发现什么?由此可得:把圆等分的份数越多,拼成的图形就越接近于长方形,尽管形状发生了变化,但面积是不变的,也就是说,拼成的长方形的.面积等于圆的面积。

第三层次推导公式让学生再注意观察屏幕上显示的由圆转化为长方形的过程,思考这个长方形的长和宽各相当圆的哪一部分?那么,能根据长方形的面积公式推导出圆的面积公式吗?归纳得到圆的面积。(公式略)回顾学习过程:将圆平均分成8份,进行拼图,目的是教给学生由圆转化为近似长方形的方法,并初步感知圆的形状变了,但面积并没有变。再让学生亲自动手将圆平均分成16份拼图,使学生进一步感知拼成的图形更接近于长方形。此时,经过学生的空间想象,他们在大脑中已经形成了由圆转化成长方形的图像,这时在计算机上再显示将圆等分32份后拼成的近似于长方形的图像,会使学生在视觉上得到证实,他们的思维结果是正确的:将圆平均分成的份数越多,拼成的图形越接近长方形,但面积始终是不变的。运用计算机显示由圆到近似长方形的图像的变换过程,揭示出数学知识的内在规律的科学美,并充分体现构图美和动态美的特点,它能刺激学生,强化学生的好奇心,提高学生探求知识奥秘的欲望,有助于解除学生视听疲劳,提高学习效率。计算机的辅助教学促进学生良好思维品质的形成,达到了预想的教学目的。

3.小结

让学生回忆一下圆的面积公式是怎样推导出来的?要求圆的面积,需要知道什么条件?这样使学生的思维能力得到进一步的提高。

4.阶段性练习

a.看标有半径的圆,求面积。

b.已知半径求面积。(练习时交待运算顺序。)

(二)学习例1要求学生运用公式正确计算,注意书写格式和运算顺序。

第三个环节:巩固练习 对于巩固练习,遵循由浅入深、由易到难、循序渐进的原则设计,意在让学生在理解概念的基础上,正确地掌握公式,并能运用知识解决实际的问题。第一层次的练习是以文字题的形式给出直径求圆的面积。第二层次的练习给出半径和直径求圆的周长和面积。第三层次的练习是在两个圆(一个标有圆心,一个没标圆心)中量出所需条件求圆的面积。然后,对全课进行总结,质疑问难。

第四个环节:布置作业。 (书中题)本节课可采用由计算机设计的三维动画,给学生以生动、形象、直观的认识,富于启发地清晰揭示了知识的内在规律,再加上学生实际动手操作和老师的点拨解说、提问,使教学过程有机组合,充分显示了电化教学的优势,较之其它教学手段和方法更易实现教学过程的最优化。

文章来源://m.386h.com/shiyongfanwen/87465.html

更多

猜你喜欢

更多

最新更新

更多

热门推荐